

BIOMASSA MICROBIANA (BMS-C) E RESPIRAÇÃO BASAL (RBS) DO SOLO COMO INDICADORES DA RESTAURAÇÃO ECOLÓGICA EM SISTEMA AGROFLORESTAL CONSORCIADO COM CAFÉ

Ana Carolina Bertanha¹, Alessandra dos Santos Penha², Silvana Perissatto Meneghin², Luciana Ruggiero Bachega³

¹ Discente do curso de Biotecnologia - Universidade Federal de São Carlos, campus Araras. E-mail: anacbertanha@gmail.com ² Departamento de Biotecnologia de Produção Vegetal e Animal - Universidade Federal de São Carlos, campus Araras ³ Programa de Pós-Graduação em Ciências Ambientais - Universidade Federal de São Carlos, campus São Carlos

INTRODUÇÃO

A perda de funções ecossistêmicas por manejo inadequado torna ações em restauração ecológica urgentes e sistemas agroflorestais (SAF) despontam como estratégia de manejo atraente para pequenos proprietários rurais. Visando avaliar o sucesso da restauração, indicadores como a atividade e a biomassa da microbiota do solo podem ser utilizados.

Pretendemos responder se a atividade e a biomassa microbiana no solo varia conforme a estratégia de restauração - SAF consorciado com café e reflorestamento convencional - e conforme o tipo de manejo de plantas invasoras - químico e mecânico.

MATERIAIS E MÉTODOS

A amostragem do solo foi realizada no inverno e verão, como coletas a uma profundidade de 10 cm. Em laboratório foi realizada a análise da biomassa microbiana (BMS-C) e da Respiração basal do solo (RBS).

Vista aérea do CCA/UFSCar. Área experimental (azul); reflorestamento de referência (vermelho).

Análise de BMS-C em laboratório.

Análise RBS em laboratório.

RESULTADOS

Tabela. Valores de BMS-C, RBS e qCO₂ nos diferentes sistemas de reflorestamento e manejos, no inverno e verão.

		BMS-C	RBS	qCO2
Épocas	Tratamentos	mg C microbiano kg solo	mg C-CO2 kg solo hora	RBS BMS-C.0,001
Inverno	SH	49,6a	2,48a	50
	SM	28,46a	2,17a	76,24
	СН	49,14a	2,12a	43,14
	CM	81,46a	3,02a	37,07
	RA	170,68	7,21	42,24
Verão -	SH	117,18a	2,92a	24,92
	SM	161,31a	2,6a	16,12
	СН	99,06a	2,9a	29,27
	CM	210,31a	5,15a	24,48
	RA	350,9	9,58	27,3

Médias seguidas pela mesma letra na coluna não diferem entre si pelo teste de Tukey (p = 0,05). Legenda: SH = SAF com uso de herbicida; SM = SAF com manejo mecânico; CH = Reflorestamento convencional com uso de herbicida; CM = Reflorestamento convencional com manejo mecânico; RA = Reflorestamento antigo.

SAF sem presença de cultivo nas entrelinhas.

Reflorestamento convencional com presença de plantas invasoras nas entrelinhas.

ℜ*CNPa*

CONCLUSÃO

Os dois tipos de reflorestamento e formas de manejo se encontram em estágios semelhantes de desenvolvimento da microbiota do solo. Fica clara a importância de realizar análises microbiológicas como indicadoras da dinâmica biológica do solo ao longo do tempo.